Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway.
نویسندگان
چکیده
Notch controls cell fate by inhibiting cellular differentiation, presumably through activation of the transcriptional regulator human C promoter Binding Factor (CBF1), which transactivates the hairy and Enhancer of split (HES-1) gene. However, we describe constitutively active forms of Notch1, which inhibit muscle cell differentiation but do not interact with CBF1 or upregulate endogenous HES-1 expression. In addition, Jagged-Notch interactions that prevent the expression of muscle cell specific genes do not involve the upregulation of endogenous HES-1. In fact, exogenous expression of HES-1 in C2C12 myoblasts does not block myogenesis. Our data demonstrate the existence of a CBF1-independent pathway by which Notch inhibits differentiation. We therefore propose that Notch signaling activates at least two different pathways: one which involves CBF1 as an intermediate and one which does not.
منابع مشابه
Notch signaling enhances survival and alters differentiation of 32D myeloblasts.
The Notch transmembrane receptors play important roles in precursor survival and cell fate specification during hematopoiesis. To investigate the function of Notch and the signaling events activated by Notch in myeloid development, we expressed truncated forms of Notch1 or Notch2 proteins that either can or cannot activate the core binding factor 1 (CBF1) in 32D (clone 3) myeloblasts. 32D cells...
متن کامل9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways
Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...
متن کاملTanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملA Notch-Independent Activity of Suppressor of Hairless Is Required for Normal Mechanoreceptor Physiology
Suppressor of Hairless [Su(H)]/Lag-1/RBP-Jkappa/CBF1 is the only known transducing transcription factor for Notch receptor signaling. Here, we show that Su(H) has three distinct functions in the development of external mechanosensory organs in Drosophila: Notch-dependent transcriptional activation and a novel auto-repression function, both of which direct cell fate decisions, and a novel auto-a...
متن کاملNotch and Transforming Growth Factor- (TGF ) Signaling Pathways Cooperatively Regulate Vascular Smooth Muscle Cell Differentiation*
Notch and transforming growth factor(TGF ) play pivotal roles during vascular development and the pathogenesis of vascular disease. The interaction of these two pathways is not fully understood. The present study utilized primary human smooth muscle cells (SMC) to examine molecular cross-talk between TGF 1 and Notch signaling on contractile gene expression. Activation of Notch signaling using N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 122 12 شماره
صفحات -
تاریخ انتشار 1996